Metabolic Engineering of Escherichia coli for Poly(3-hydroxybutyrate) Production under Microaerobic Condition

نویسندگان

  • Xiao-Xing Wei
  • Wei-Tao Zheng
  • Xue Hou
  • Jian Liang
  • Zheng-Jun Li
چکیده

The alcohol dehydrogenase promoter PadhE and mixed acid fermentation pathway deficient mutants of Escherichia coli were employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. The E. coli mutant with ackA-pta, poxB, ldhA, and adhE deletions accumulated 0.67 g/L P3HB, up to 78.84% of cell dry weight in tube cultivation. The deletion of pyruvate formate-lyase gene pflB drastically decreased P3HB production and P3HB content to 0.09 g/L and 24.44%, respectively. Overexpressing pflB via the plasmid in its knocked out mutant restored cell growth and P3HB accumulation, indicating the importance of the pyruvate formate-lyase in microaerobic carbon metabolism. The engineered E. coli BWapld (pWYC09) produced 5.00 g/L P3HB from 16.50 g/L glucose in 24 h batch fermentation, and P3HB production yield from glucose was 0.30 g/g, which reached up to 63% of maximal theoretical yield.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effectiveness of xylose utilization for high yield production of lactate-enriched P(lactate-co-3-hydroxybutyrate) using a lactate-overproducing strain of Escherichia coli and an evolved lactate-polymerizing enzyme.

Xylose, which is a major constituent of lignocellulosic biomass, was utilized for the production of poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], having transparent and flexible properties. The recombinant Escherichia coli JW0885 (pflA(-)) expressing LA-polymerizing enzyme (LPE) and monomer supplying enzymes grown on xylose produced a copolymer having a higher LA fraction (34mol%) than tha...

متن کامل

Engineering the xylose‐catabolizing Dahms pathway for production of poly(d‐lactate‐co‐glycolate) and poly(d‐lactate‐co‐glycolate‐co‐d‐2‐hydroxybutyrate) in Escherichia coli

Poly(lactate-co-glycolate), PLGA, is a representative synthetic biopolymer widely used in medical applications. Recently, we reported one-step direct fermentative production of PLGA and its copolymers by metabolically engineered Escherichia coli from xylose and glucose. In this study, we report development of metabolically engineered E. coli strains for the production of PLGA and poly(d-lactate...

متن کامل

Production of 3-hydroxypropionate homopolymer and poly(3-hydroxypropionate-co-4-hydroxybutyrate) copolymer by recombinant Escherichia coli.

Conversion of 3-hydroxypropionate (3HP) from 1,3-propanediol (PDO) was improved by expressing dehydratase gene (dhaT) and aldehyde dehydrogenase gene (aldD) of Pseudomonas putida KT2442 under the promoter of phaCAB operon from Ralstonia eutropha H16. Expression of these genes in Aeromonas hydrophila 4AK4 produced up to 21 g/L 3HP in a fermentation process. To synthesize homopolymer poly(3-hydro...

متن کامل

Application of the Taguchi Design for Production of Poly(β-hydroxybutyrate) by Ralstonia eutropha

The Taguchi design of experiments was used to test the relative importance of medium components and environmental factors on poly(β-hydroxybutyrate)(PHB) production by Ralstonia eutropha. The optimum condition was obtained as: fructose concentration, 15 g/L; C/N ratio, 7.4; agitation speed 200 rpm; culture time, 40 h; temperature, 25 ° C; seed age, 15 h. At optimu...

متن کامل

Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass.

BACKGROUND Poly(3-hydroxybutyrate) (PHB), have been considered to be good candidates for completely biodegradable polymers due to their similar mechanical properties to petroleum-derived polymers and complete biodegradability. Escherichia coli has been used to simulate the distribution of metabolic fluxes in recombinant E. coli producing poly(3-hydroxybutyrate) (PHB). Genome-scale metabolic net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015